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A severe oscillation, accompanied with an abnormal “click” sound, of a fuel feeding pipe
system during valve closing, when the feeding flowrate reaches a certain value, is observed
experimentally. A fluctuation model in which stiffness and damping coefficients of the vibra-
tion system are time varying is proposed. Each coefficient is composed of two parts, one of
which is constant and the other is time varying. Based on this model, simulation transients
of the vibration displacement, velocity and pressure in the pipe are presented. Simulations
of the pressure transients are compared with experimental data detected by pressure trans-
ducer, which shows that both have fluctuations in the transient process at a large flowrate.
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1. Introduction

In a reservoir-pipe-valve (RPV) system, water hammer (WH) will be generated during valve
closing, which may affect the system stability or even produce undesired damage. The essence
of this phenomenon is the conversion of liquid kinetic energy into its elastic potential energy
which, for an elastic or weakly compressible liquid, may produce significant pressure variation.
This variation propagates in the pipeline as an elastic wave. The simplest model is that the
system structure is a rigid body and the fluid in the pipeline is an elastomer, and WH effect
produces an elastic wave in the pipeline (Wylie et al., 1993). Theoretically, partial differential
equations (Wang and Eat Tan, 1997; Tijsseling, 2003; Yang et al., 2004) are used to describe the
pipe flow in which friction (Zarzycki et al., 2011), Poisson’s (Wiggert and Tijsseling, 2001) and
water hammer effects (Henclik, 2015) are generally included. Ferras et al. (2018) investigated the
fluid-structure interaction in a pressurized fluid-filled pipe. Yang et al. (2017) developed a model
resolving the pressure response of a pneumatic brake circuit with the effect of a transmission
pipe. Meng et al. (2019) tried to apply graphic processing unit parallel computing to simulate
hydraulic dynamics in large-scale water supply systems. Jiang et al. (2018), considering both the
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normal and cavitation condition, developed the finite difference method to handle pressure tran-
sients. For unsteady pipe flow simulation, especially for fast transients, time varying wall shear
stress have to be taken into account. Zarzycki and Urbanowicz reported a series of important
works about the unsteady pipe flow. They proposed methods to confirm coefficients of weight-
ing functions in a simple way (Urbanowicz, 2017), approximate weighting functions as sums of
exponential components (Urbanowicz and Zarzycki, 2012) and improved the lumping friction
model estimating the basic parameters (Urbanowicz and Zarzycki, 2015). They also simulated
transients of a turbulent pipe flow (Zarzycki et al., 2007) and a cavitating liquid flow (Urbanow-
icz et al., 2012; Urbanowicz and Zarzycki, 2008; Zarzycki and Urbanowicz, 2008). In their works,
the model of time-varying resistance was adopted for simulation of transient phenomena of un-
steady flow. The instantaneous wall shear stress is a sum of two parts, one of which is related
with quasi-steady and the other with unsteady stresses. The time varying component in the
stress is derived as the convolution of liquid local velocity changes and a weighting function.
WH may cause vibration of the RPV system during the valve closing, although the pipeline
system is fixed by supports. The supports may be elastic (Adamkowski et al., 2017) or viscoelas-
tic (Henclik, 2018b). These supports have different characteristics and affect system vibrations
(Covas et al., 2005; Keramat et al., 2012; Zanganeh et al., 2015). In a majority of studies on
vibrations of RPV systems, the pipe is modeled as a straight line and the supports distributed
regularly. Bettaieb et al. (2019) developed a numerical model which combined the Kelvin-Voigt
model and Vitkovsky formulation to obtain the response of the pipeline under transient events.
Recently, a new model (Henclik, 2018a) was proposed, where the supports were replaced by
a spring and a damper connected with a valve. Dong et al. (2019) analyzed the overall strain
behavior of a buried pipeline subjected to an impact load.

In the present experiment, the RPV system is designed as an aircraft fuel feeding. The
pipeline supports distribute irregularly owing to the limitation of space. A severe oscillation of
the system while valve closing is observed. In the case of a lower feeding flowrate, the intensity of
vibration is relatively small and its attenuation is regular, almost similar to that of a harmonic
oscillator. However, when the feeding flowrate reaches a certain value, the system vibration is
violent and, meanwhile, an abnormal “click” sound is accompanied. The transient process is
no longer regular and fluctuations appear. In order to investigate this abnormal vibration, we
propose a fluctuation model in which the stiffness and damping coefficients of the vibration
system are not constants. But each of them is composed of two terms, one of which is constant
and the other is time varying. The time varying coefficient is used to describe the fluctuation
in the transient process. Based on the model, we present simulation transients of the vibration
displacement and velocity. The pressure transient in the pipe is also presented. The simulation
of the pressure transients are compared with the experimental data detected by a pressure
transducer.

2. Experiments

2.1. Description of the experimental setup

A diagram of the RPV system used in an experiment is illustrated in Fig. 1. It can be
classified as two parts. The first part consists of a fuel delivery pump (1), filter (2), throttle
valve (3), safety valve (4), pressure transducer (5), switch valve (6) and a flowmeter (7). The
second component includes a part of the fuel transfer pipeline, directional valve (8) and a fuel
consumption unit (9). The aim of the RVP system is originally designed for feeding the fuel to the
consumption unit. In order to save the experimental cost, we turn off the fuel transmission to the
consumption unit (9) with the valve (8). The pipeline of the central part is made of aluminum
alloy and its length, diameter, and thickness are 8.7m, 30mm, and 3mm, respectively. The
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pipeline is fixed on the base with irregularly spaced supports. The fluid used in the experiment
is aviation kerosene RP-5. The air content and the viscosity coefficient of the fuel in 20◦C
are 0.011 g/mol and 1.31mPa·s, respectively. The delivery rate can be adjusted by the gear
fuel pump (1) (KCB) and the throttle valve 3, and measured by the flowmeter (7) (model:
LWGY-25A, range: 0.5-5m3/h, deviation: ±1%). The delivery pump is not stopped during the
valve closing. The average pressure in the pipe after the valve closed is preset. The increase of
the average pressure is drained by the adjustable throttle valve (3). A pressure transducer (5)
(model: MEAS U5300, range: 0-70 bar, deviation: ±0.5%) near the valve is used to monitor the
fuel pressure in the pipe which connects with a data acquisition card (NIUSB-4431). The data
collected by the card, with A/D conversion, is input to the computer.

Fig. 1. A scheme of the RPV system used in the experiment: 1 – gear fuel pump, 2 – filter,
3 – throttle valve, 4 – safety valve, 5 – pressure transducer, 6 – switch valve, 7 – flowmeter,

8 – directional valve, 9 – fuel consumption unit

2.2. Experimental results

The fuel starts to flow through the pipeline when the delivery pump turns on. The flowrate
is controlled by the pump. In the experiment, the flowrates are set at 0.3m/s (12 L/min) and
0.8m/s (56 L/min), respectively. In each case the delivery is constant. After the delivery pump
runs smoothly, the computer executes the valve closing command. The closing command has a
5 seconds delay time, i.e. after 5 seconds of the command, the valve starts closing. The valve
can be closed within 10ms. In both cases, as the valve starts closing, the pipeline and valve
begin to oscillate. After a short period of time of the oscillation, the system is stable again.
In the case of a flowrate at 0.3m/s, the vibration intensity is relatively small. However, in the
case of a flowrate at 0.8m/s, the oscillation appears violently and randomly. Meanwhile, an
abnormal “click” sound is accompanied. The vibration continues for a period of time which is
within 20 seconds and the system restores the stable state at 0.7MPa of the preset pressure.

The transducer installed near the valve reads the pressure transient in the pipe. Figure 2
depicts the pressure transients recorded by the transducer in which curves (a) and (b) are
corresponding to the flowrates 0.3m/s and 0.8m/s. Both curves in Fig. 2 show that the pressure
starts oscillation during the valve closing and, at the beginning, the pressure rises rapidly for
a very short period of time. But their increase ranges are completely different. The pressure
increases from 0.25MPa to 0.9MPa in the first case, and the range is from 0.3MPa to 2.6MPa
in the second. The pressure vibration attenuates from their maximum to the preset stable state
0.7MPa in both cases. The decay time in the first case is shorter than that in the second case.
The most important difference is the feature of the vibration decay process. In the first case,
the decay process is similar as the classic exponential type. However, fluctuations appear in the
second case, which are random, flickering and with a large variable change range.
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Fig. 2. Pressure transients in the pipe during the valve closing: (a) v0 = 0.3m/s, (b) v0 = 0.8m/s

3. Theoretical model

3.1. Physical model of RPV system

The physical model of the RPV system is illustrated in Fig. 3. The output of the fuel pump
is defined as the starting point, i.e. x = 0, the position of the valve is at x = L, and velocity
of the fuel in the pipeline is v(x, t). In order to investigate the water hammer for the PRV
system, the support is simplified as a spring and damper which are connected to the valve
node. Suppose α and b represent the coefficients of stiffness and damping, respectively. When
the flowrate in the pipe is low, both coefficients can be considered as constants. However, when
the flowrate is large, the water hammer effect during valve closing may be strong and. in this
case, the coefficients of stiffness and damping cannot be considered as constants. Because the
pipeline supports distribute irregularly, the fluctuation easily appears in the system at a large
flowrate. Under this circumstance, the coefficients of stiffness and damping are supposed to be
as α0+∆α(t) and b0+∆b(t) where α0 and b0 are constants as in classic theory, and ∆α(t), ∆b(t)
are time-varying. The time variables ∆α(t) and ∆b(t) are introduced to describe fluctuations in
the system.

Fig. 3. Physical model of the RPV system

3.2. Mathematical model of the pipeline flow

The basic fluid-solid coupling equations are shown as below (Wiggert and Tijsseling, 2001)
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The left hand side of equations (3.1)1,2 represents the fluid parameters of the system. The left
hand side of equations (3.1)3,4 represents the pipeline. The right hand side of these equations
describe the fluid-structure interaction (FSI), where x is the positional variable in the pipeline,
c is the speed of sound in the fluid, t is time, v is fuel velocity, P is fluid pressure, w is pipe section
velocity, σ is longitudinal stress, ρ is fuel density, ρs is density of the pipeline, E is the Young
modulus of the pipeline, µ is the Poisson coefficient, τs is frictional stress of the pipeline wall,
g is the gravitational acceleration, γ is the angle between the pipeline axis and the horizontal
plane, e is thickness of the pipeline, and D is inner diameter of the pipeline.

3.3. Vibration model of RPV system

As the valve is closing, pressure of the water hammer acts on the pipeline system. Energy
exchanges between the fuel and the structure, which causes vibrations. According to the physical
model illustrated in Fig. 3, the system can be simplified as a harmonic oscillator. The oscillator
is located at the node of the valve. In essence, vibration of the pipeline system is caused by
pressure variation of the fluid acting on the valve node. The pressure variation of the fluid
results from its energy conversion between the kinetic and potential form. Assuming that, the
water hammer makes the valve node move with a distance y. When the node moves to the
maximum distance y0, the valve velocity is zero, and the elastic potential of the RPV system
reaches its maximum. Thereafter, the pipeline system generates vibrations under the action of
elastic restoring, damping, and water hammer forces. The resilience of the system is defined as
follows

Fr = −αy (3.2)

where α is the stiffness coefficient, and y is expansion length of the spring, which is equal to the
displacement of the valve.
Assuming that the fuel initial flowrate is v0, then, the kinetic energy of the water hammer is

mwv
2
0/2, where mw is mass of the fuel in the pipeline. When the valve moves to the maximum

distance y0, the potential energy of the system is −αy20/2. According to the law of energy
conservation, we obtain

αy20 = mwv
2
0 (3.3)

Thus, the vibration amplitude y0 can be obtained according to this equation (energy dissipation
in motion is neglected here).
The damping force is

Fd = −bẏ (3.4)

where b is the damping coefficient, and ẏ is the valve velocity.
Considering the restoring force, damping force and the excitation force caused by WH, the

dynamic equation of the pipeline system is

mÿ + bẏ + αy = (P − P0)S (3.5)

where m is mass of the RPV system, S is the cross-sectional area of the pipeline, P0 is the fuel
pressure before the valve closing, P is the fuel pressure when the valve starts to close.
For the pipeline with a given section, the larger the initial speed of the fluid, the larger its

kinetic energy, and the stronger the water hammer. In the case of a large flowrate or a strong
water hammer, according to the fluctuation model established in this paper, equation (3.5)
becomes

mÿ + [b0 +∆b(t)]ẏ + (α0 +∆α)y = (P − P0)S (3.6)
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From the physical point of view, this is a forced and damped vibration equation. It can also be
considered as a force balance equation in which each term (from left to right) represents inertia,
damping, restoring and excitation forces. It is different from the classic vibration equation in
which coefficient fluctuations of stiffness and damping are considered. The fluctuation reveals
randomness of the RPV system with irregular distribution of the supports.

4. Analysis of fluctuation parameters of the system

4.1. Velocity and pressure of fluid in the pipeline

In our experiment, the viscosity coefficient of kerosene RP-5 is 1.31mPa·s in 20◦C, thus, the
frictional stress in equation (3.1)1 is small. The action of the gravitational force is zero in this
equation because it is assumed that the pipeline is lain in the horizontal direction. Meanwhile,
we mainly pay attention here to the fluid velocity and pressure without considering deformation
of the pipeline. So, as in the reference (Henclik, 2018a), we neglect friction and Poisson effects in
equations (3.1)1 and (3.1)2. Under these conditions and based on equations (3.1)1,2, the equation
of fluid velocity in the pipeline can be obtained as follows

∂2v

∂x2
−
1

c2
∂2v

∂t2
= 0 (4.1)

where c is the wave speed, and

c =

√

K

ρ

1
√

1 + (1− µ2)KD
Ee

(4.2)

where K is the bulk modulus of the fluid.
Because the fluid pressure at the output of the pump is constant, the boundary condition

of the left hand side of the pipeline is x = 0, ∂v(x, t)/∂x = 0. When the valve moves to the
maximum position y0, the velocity of vibration is zero. At the right end of the pipe, the fluid
velocity is as same as that of the valve node. Therefore, the boundary condition at right is
x = L+ y0, ∂v(x, t)/∂x = 0.
Using the separation variable method to solve equation (4.1), the solution can be expressed

as

v(x, t) = V (x)T (t) (4.3)

where V (x) and T (t) are all univariate functions.

4.2. Excitation force

When the valve starts closing, the relative velocity of the fluid is v0 − v(x, t). According to
the Joukovsky formula, the excitation force acting on the valve caused by WH is

(P − P0)S = ρc(v0 − v)S (4.4)

The function v(x, t) in equation (4.3) can be expressed as a Fourier series (Dong et al.,2019),
where the n-th order component is

vn(x, t) = v0n cos(knx) cos(ωnt) (4.5)

and ωn = knc. For simplicity, we only consider the fundamental component in calculation.
Substituting the fundamental component in equation (4.5) into (4.4) and then into equation

(3.6), we obtain

mÿ + [b0 +∆b(t)]ẏ + (α0 +∆α)y = ρv0cS[1− cos(k0L) cos(ω0t)] (4.6)

The initial conditions of the equation are t = 0, y = y0, ẏ = 0.
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4.3. Pressure in the pipeline

Ignoring the friction and Poisson effects of the system, according to equation (3.1)2, the
relation between the velocity and pressure in the pipeline is

∂v(x, t)

∂x
+
1

ρc2
∂P (x, t)

∂t
= 0 (4.7)

The fluid pressure in the pipeline can be obtained by integrating equation (4.7), and we have

P (x, t) = P (x, 0) − ρc2
t
∫

0

∂v(x, t)

∂x
dt (4.8)

where P (x, 0) is the initial pressure of the fluid in the pipeline. Assuming that, the fluid velocity
v(x, t) at the valve input is equal to the valve node vibration velocity ẏ. Based on equation (4.5),
we have

∂v(x, t)

∂x
= k tan(kL)ẏ(t) (4.9)

where k is the wave vector and k = ω/c, c is the wave speed. Suppose the liquid and the valve
vibrate at the valve node synchronously. Thus, in the case of non-fluctuation, ω =

√

α0/m and
then

k =
1

c

√

α0
m

(4.10)

Substituting equations (4.9) and (4.10) into equation (4.8), we obtain

P (t) = P (0) + ρc

√

α0
m
tan(kL)[y0 − y(t)] (4.11)

5. Results and discussion

In the numerical calculation, the parameters of the line were as follows: pipe length L = 8.7m,
inner diameter D = 30mm, thickness e = 3mm, bulk modulus E = 69GPa, density
ρs = 2.73 · 103 kg/m3. The working liquid is kerosene RP-5 with density ρ = 0.78 · 103 kg/m3
and the bulk modulus K = 1.36GPa. The wave speed is c = 1324m/s, mass m = 9.3 kg and
is estimated as the sum of masses of the fluid, pipe and the valve. The stiffness and damping
coefficients are α0 = 274N/mm and b0 = 54Ns/m. The values of stiffness and damping coeffi-
cients are estimated with the formula α0 = 4π

2[c/(4L)]2mw and b0 = 2ξ
√
Kmw, where mw is

mass and ξ is a non-dimensional damping degree (0 < ξ < 1) (Henclik, 2018a). There are two
cases in the numerical calculation. In the case of a flowrate at 0.3m/s, the stiffness and damping
coefficients are constants respectively, i.e. ∆α(t) and ∆b(t) in equation (4.6) are zero. Using the
Runge-Kutta method to calculate equation (4.6), solutions y(t), ẏ(t) can be obtained. Then,
substituting the solution y(t) into equation (4.11), the pressure P (t) on the valve is obtained.
In the second case of a flowrate at 0.8m/s, fluctuations of the stiffness and damping coef-

ficients ∆α(t) and ∆b(t) should be considered. Usually, the fluctuation can be mathematically
described as a pulse function which is expressed as a Fourier series, e.g. the pulse delivery of
the pump is taken as a sum of Fourier components (Zarzycki et al., 2017). Our aim is mainly to
explain the fluctuation and, in simple calculations, we only consider the fundamental frequency
in the pulsation. So, we assume the time varying stiffness and damping ∆α(t) and ∆b(t) as

∆α = α0 cos(ωf t) ∆b = b0 cos(ωf t) (5.1)



1044 Y. Miao et al.

where ωf is the frequency related with fluctuation. In calculations, we suppose that ωf = ω0/5.
This assumption means that one fluctuation appears for five WH oscillations.
Substituting equation (5.1) into equation (4.6), the vibration equation of the system under

fluctuation conditions is obtained as

mÿ + b0[1 + cos(ωf t)]ẏ + α0[1 + cos(ωf t)]y = ρv0cS[1− cos(k0L) cos(ω0t)] (5.2)

According to equations (5.2) and (4.6), the displacement y(t), velocity ẏ(t), and pressure P (t)
of the system under the fluctuation conditions are calculated.

Fig. 4. Vibration of the system and the pressure transient during the valve closing v0 = 0.3m/s

Figure 4 depicts numerical calculation results for vibrations of the pipeline under a weak
water hammer effect. Figures 4a and 4b are corresponding to the transients of vibration dis-
placement and velocity, respectively. It can be seen from them that the pipeline system generates
vibrations when the valve is closing. The initial amplitudes are determined by strength of the
water hammer effect. Both vibration amplitudes of displacement and velocity attenuate. And
the attenuation tendency is approximately exponential. The attenuation speed is related with
the damping coefficient. After a period of time, the system tends to a stable state. Figure 4c
shows the liquid pressure transients at the valve in which the red curve is simulation and the
blue one is experimental data detected by the pressure transducer. Both of them show that the
pressure in the pipe exhibits vibration when the valve is closing, and the vibration attenuates
nearly exponentially and finally tends to the stable state. The fluctuations among the vibration
transient processes are completely not observed in theoretical curves and almost not presented
in the experimental data. The experimental data shows that the pressure vibration amplitude



Vibration transients of reservoir-pipe-valve system... 1045

increases rapidly during a short period of time at the beginning, and reaches maximum and
then attenuates. However, this rising edge does not appear in the theoretical curve. It is also
observed that pressure in the experimental data is increasing from 0.25MPa at the beginning,
but it starts to decrease from the central value 0.7MPa. In addition, the theoretical vibration
transient is completely symmetrical. These differences between the theoretical and experimental
result from theoretical assumptions: (i) the valve is closed instantaneously, (ii) the initial value
of pressure is supposed at 0.7MPa and (iii) the expression of vibration equation (4.6) has a
symmetrical feature.

Fig. 5. Vibration of the system and pressure transient in the pipe during the valve closing v0 = 0.8m/s

Figure 5 depicts simulation of the system vibration under a strong water hammer effect with
the fluctuation model. Figures 5a and 5b correspond to the transients of vibration displacement
and velocity, respectively. It is observed from them that the pipeline system generates vibra-
tions when the valve is closing. The vibration amplitudes of displacement and velocity, on the
overall trend, attenuate from large to small with time and, finally, tend to stable states. But the
attenuation tendency is not exponential, and fluctuations do appear in the transient process.
Figure 5c shows liquid pressure transients in the pipe at the valve, in which the red curve is
simulation and the blue one is experimental data detected by the pressure transducer. Both
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of them verify that the pressure vibrates during valve closing and the pressure change range
is much larger, which is different from that in Fig. 4c. The experimental data shows that, at
the beginning, the pressure increases rapidly from 0.3MPa to 2.6MPa during a short period of
time, but this rising edge is not visible in the theoretical curve. The pressure oscillation attenu-
ates with time and finally tends to a stable state at 0.7MPa. However, the damping process is
not completely exponential. The most important facts are that the fluctuations in the transient
process are not only observed in experimental data, but also reflected in the simulation curve.
Perhaps, the appearance of the abnormal click sound is related with these fluctuations. It should
be pointed that the practical pressure fluctuations in the experiment are random, impulsive and
the pressure oscillation is asymmetrical. But they are periodical, less violent and the vibration is
symmetrical in the theoretical prediction curve. Especially, the minimum pressure of the simu-
lation curve is in an unreasonable range. Maybe, these defects result from other physical factors
existing in extreme cases, which affect pressure of the pipe flow. For example, when pressure
falls to a very low value equal to vapor pressure, cavitations will occur in an unsteady pipe flow.
By taking into account unsteady frication loss in a transient cavitating pipe flow, (Urbanowicz
and Zarzycki, 2008; Zarzycki and Urbanowicz, 2008) showed that great pressure changes are
accompanied with the cavitations. Another obvious reason is that the time varying coefficients
of stiffness and damping are assumed to be harmonic oscillation functions in order to simplify
calculation. We will try to use an impulsive random sampling function instead of the harmonic
and flow cavitations in the low pressure range to modify the model in the future work.
In addition, comparison of double experimental pressure oscillations in Fig. 2 shows that

there is some frequency difference. The frequency in Fig. 2a is slightly smaller than that in
Fig. 2b. Based on the fluctuation model, the stiffness is not a constant and its value is related
with the flowrate. The phenomenon of the system affected by the input is non-linear. Henclik
investigated the relation between the frequency of pressure oscillation and stiffness of the spring
attached to the valve. His result (Henclik, 2018a) shows that the frequency difference of pressure
oscillations in the pipe is 0.8 Hz when the stiffness difference is 102N/mm.

6. Conclusions

• Vibration transients of the RPV system are experimentally studied. A severe oscillation of
the fuel feeding the RPV system with irregular spaced supports is observed and pressure
transients in the pipe are detected experimentally at the moment of valve closing. In the
case of a lower feeding flowrate, the range of pressure changes is relative small and the
oscillation decay is relative regular. However, when the feeding flowrate reaches a certain
value, the system vibration becomes violent. Meanwhile, a series of abnormal “click” sounds
are accompanied. The fluctuation phenomena appear in the detected pressure data.

• A fluctuation model for simulation of the RPV system vibrations is proposed. In the model,
irregular spaced supports are equivalent to a spring and a damper, and time varying terms
are introduced into the coefficients of stiffness and damping. Each coefficient is composed
of two terms in which one is constant as in the classic description and the other is time
varying to describe the fluctuation in the vibration process.

• A new dynamic vibration equation is established based on the fluctuation model, the
expressions for damping and restoring forces are modified. Using these modified damping
and restoring forces as well as the excitation force caused by WH effect, a new vibration
dynamic equation is arrived at. And then, an expression for pressure in the pipe is derived.

• Numerical results from the vibration equation of the RPV system are calculated by the
Runge-Kutta method. Simulation transients of the vibration displacement and velocity
as well as simulation of pressure transients at lower and larger flowrates are obtained,
respectively.
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• Simulations of pressure transients are compared with experimental data detected by a
pressure transducer. Both results show that pressure in the pipe exhibits vibration during
valve closing. The oscillation attenuates with time and finally tends to a stable state. How-
ever, pressure damping transients are completely different at lower and larger flowrates.
Both experimental and theoretical results show that the pressure vibration attenuates
near-exponentially in the former case. Yet in the latter case, both the experiment and
simulation show that the fluctuations appear in decay processes although their features
have some differences.

In this work, the time varying coefficients in the model are assumed as a simple harmonic
function for simplicity of calculation. This assumption may result in defects of the simulation.
We will take into account cavitation in the case of a low pressure unsteady flow and use a more
reasonable function replacing the harmonic assumption to modify the model in the future work.
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